679 research outputs found

    The Nights of Our Lives: Why We Sleep & Dream

    Get PDF
    Explore the most recent theories and evidence of why we sleep, and what happens in the brain during sleep and the consequences of sleep loss and sleep disorders

    Introduction: From Lab Bench to Weight Bench

    Get PDF

    On a differential inclusion related to the Born-Infeld equations

    Get PDF
    We study a partial differential relation that arises in the context of the Born-Infeld equations (an extension of the Maxwell's equations) by using Gromov's method of convex integration in the setting of divergence free fields

    Zero Entropy Interval Maps And MMLS-MMA Property

    Full text link
    We prove that the flow generated by any interval map with zero topological entropy is minimally mean-attractable (MMA) and minimally mean-L-stable (MMLS). One of the consequences is that any oscillating sequence is linearly disjoint with all flows generated by interval maps with zero topological entropy. In particular, the M\"obius function is orthogonal to all flows generated by interval maps with zero topological entropy (Sarnak's conjecture for interval maps). Another consequence is a non-trivial example of a flow having the discrete spectrum.Comment: 12 page

    Homogenization of Maxwell's equations in periodic composites

    Full text link
    We consider the problem of homogenizing the Maxwell equations for periodic composites. The analysis is based on Bloch-Floquet theory. We calculate explicitly the reflection coefficient for a half-space, and derive and implement a computationally-efficient continued-fraction expansion for the effective permittivity. Our results are illustrated by numerical computations for the case of two-dimensional systems. The homogenization theory of this paper is designed to predict various physically-measurable quantities rather than to simply approximate certain coefficients in a PDE.Comment: Significantly expanded compared to v1. Accepted to Phys.Rev.E. Some color figures in this preprint may be easier to read because here we utilize solid color lines, which are indistinguishable in black-and-white printin

    Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor

    Full text link
    A boundary between two d-wave superconductors or an s-wave and a d-wave superconductor generally breaks time-reversal symmetry and can generate spontaneous currents due to proximity effect. On the other hand, surfaces and interfaces in d-wave superconductors can produce localized current-carrying states by supporting the T-breaking combination of dominant and subdominant order parameters. We investigate spontaneous currents in the presence of both mechanisms and show that at low temperature, counter-intuitively, the subdominant coupling decreases the amplitude of the spontaneous current due to proximity effect. Superscreening of spontaneous currents is demonstrated to be present in any d-d (but not s-d) junction and surface with d+id' order parameter symmetry. We show that this supercreening is the result of contributions from the local magnetic moment of the condensate to the spontaneous current.Comment: 4 pages, 5 figures, RevTe

    The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem

    Get PDF
    Consider the initial-boundary value problem for the 2-speed Carleman model of the Boltzmann equation of the kinetic theory of gases set in some bounded interval with boundary conditions prescribing the density of particles entering the interval. Under the usual parabolic scaling, a nonlinear diffusion limit is established for this problem. In fact, the techniques presented here allow treating generalizations of the Carleman system where the collision frequency is proportional to some power of the macroscopic density, with exponent in [-1,1]

    A C0 interior penalty discontinuous Galerkin method for fourth‐order total variation flow I: Derivation of the method and numerical results

    Get PDF
    We consider the numerical solution of a fourth‐order total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourth‐order parabolic equation, we perform an implicit discretization in time and a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper

    Bounds on strong field magneto-transport in three-dimensional composites

    Full text link
    This paper deals with bounds satisfied by the effective non-symmetric conductivity of three-dimensional composites in the presence of a strong magnetic field. On the one hand, it is shown that for general composites the antisymmetric part of the effective conductivity cannot be bounded solely in terms of the antisymmetric part of the local conductivity, contrary to the columnar case. So, a suitable rank-two laminate the conductivity of which has a bounded antisymmetric part together with a high-contrast symmetric part, may generate an arbitrarily large antisymmetric part of the effective conductivity. On the other hand, bounds are provided which show that the antisymmetric part of the effective conductivity must go to zero if the upper bound on the antisymmetric part of the local conductivity goes to zero, and the symmetric part of the local conductivity remains bounded below and above. Elementary bounds on the effective moduli are derived assuming the local conductivity and effective conductivity have transverse isotropy in the plane orthogonal to the magnetic field. New Hashin-Shtrikman type bounds for two-phase three-dimensional composites with a non-symmetric conductivity are provided under geometric isotropy of the microstructure. The derivation of the bounds is based on a particular variational principle symmetrizing the problem, and the use of Y-tensors involving the averages of the fields in each phase.Comment: 21 page
    corecore